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Fractalization of Rectangular Rings 
or 

Chainese Spoken Here 
 

1. Introduction 
 
An interesting aspect of statistical geometry fractals is the random chain-linkage of "donut" 

shapes with holes, i.e., random topology.  This was first seen in fractalizations of toroidal rings 
constructed by Paul Bourke.  This phenomenon only occurs for more than two Euclidean dimensions. 

Basic ideas of statistical geometry fractals /1/ tell us that it is possible to fill space completely "in 
the limit" with rings, some of them (randomly) linked in chains.  The present study was undertaken to 
get a better understanding of this bizarre-sounding idea: "You can fill all space with rings."  The 
answer to this question is "Yes."  If the question is "Can you fill all space with rings every one of which 
has at least one link?", the answer appears to be "No."  If the question is "Can you create a 
rectangular-ring fractal with better than 95% of the rings chain-linked in a single chain?", the answer is 
"Yes." 

The first part of this report (secs. 2-4) describes the geometry of the rings and the computation 
scheme.  Section 5 describes the statistics of fractalization, and poses the question "What is the 
probability of finding a chain containing k links?".  The work was a joint effort by Bourke and Shier, 

with the latter doing most of the computation and code development, and the former checking code 
validity with three-dimensional ray-traced images, and making drawings of the finished product. 
 
 2. Description 

 
While toroidal rings make fascinating images, they have some limitations for systematic studies of 

chain-linking.  One would like to compute whether a given pair of rings is chain-linked or not.  This is 
easier if one uses right-angled shapes as shown in Fig. 1. 

 

 
Fig. 1. Geometric specification of the three rings (not to scale).  The bold numbers show the nsymb numbers for 

each orientation.  The small numbers on each "brick" show how the bricks are arranged in the ring.  This sketch 
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shows the orientation and dimensions of the rings and bricks, but the origin of coordinates used in the data base 
lies at the centers of the rings (Fig. 2).   

 
The ring can be thought of as a thin flat square slab having outer edge lengths 2r on the long 

sides and thickness 1r, with a square hole cut in the middle.  A right-angled cut through any arm of 

the ring is a square which has dimensions 1r by 1r.  It is required that 0 < 1 < 1.  The bounding 

region for fractalization is a cube. 
It can be seen from Fig. 1 that each ring is made up from 4 "bricks1".  Overlap is tested by testing 

all 4 bricks of ring A against all 4 bricks of ring B (16 tests).  Overlap tests of bricks are quite fast.  
This overlap test is exact in the sense that its accuracy is limited only by the resolution of the floating 
point numbers used.

 
During trials a ring is specified by 
 

 The values of the coordinate points x, y, z at the center of the ring. 

 The size r which is half the outer edge length. 

 An integer parameter nsymb which is 0 for a ring in the xy plane, 1 for a ring in the yz plane 

and 2 for a ring in the zx plane (Fig. 1). 
 

With the rings lying in orthogonal planes the number of chain links will be higher than if they have 
random orientations. 

 
Fig. 2.  Local coordinate system for the data base and the computations, showing the three orthogonal ring 

orientations.  The origin of coordinates is at the center of the ring.  The x position of a ring is the distance from 

the origin of coordinates of the bounding cube at one of its corners to the center of the ring.  The rings are drawn 

for 1 = 0.2. 

 
This work uses periodic boundaries2.  An associated question is the treatment of the "redundant3" 

rings.  Each of the redundant rings is viewed as a separate ring.  Because of redundancy if we set out 

                                                           
1
 For present purposes a "brick" is defined as a solid all of whose boundaries are xy, yz, or zx planes.  The 

arrangement of the bricks is somewhat arbitrary and is not required for a geometric specification of the ring, so it 
is omitted from the data base. 
2
 With inclusive boundaries the rings in (say) the xy plane tend to pile up near the xy sides of the bounding box.  

With periodic boundaries the sides of the box have much less influence, i.e., the distribution of rings is more 
random. 
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to place k nonredundant rings, the total ring count will be somewhat larger than k because we must 

include the redundant rings. 
 

 
Fig. 3. An example of a large chain extracted from a set of rings fractalized within a cube using periodic 
boundaries.  The round rods show the bounding cube.  Every ring is chain-linked to at least one other ring, and 
many of them have multiple links.  A ray-tracing technique has been used to improve visualization of the data.  
Rings in the xy, yz, and zx planes have different colors.  This structure is a 3D "tile" and will join smoothly when 
repeated with a spacing which is a multiple of the bounding cube edge length, i.e., it has translation symmetry.  
Close study will show that the rings are "clustered" -- an xy-plane ring is more likely to be close to another xy-
plane ring, etc. 

                                                                                                                                                                                                        
3
 With periodic boundaries, if a ring crosses the boundary it gets 1, 3, or 7 additional "redundant" rings which 

have the same size and orientation of the "original" one but are displaced by bounding cube edge lengths.  The 
total volume of the parts of the original and redundant rings which lie within the bounding cube adds up to the 
volume of a single ring.  
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Fig. 4.  A physical model of a chain of rings.  A description file was prepared by Bourke and sent to a 3D printer 
with this result.  The smaller and less-entangled rings flop around, constrained only by their ring topology. 

 
3. Fractalization 

 

In order to produce a substantial amount of chain linking it is desirable to have 1 small.  If it is 
too close4 to 1.0 chain linking cannot occur ("fat" rings can't be threaded through each other).  There 
is a trade-off between thin rings (much linking) and slow computation (many trials per placement).  In 
general 3D fractalizations are slower than 2D and 1D, and have lower maximum c values. 

After early work with inclusive boundaries it was decided to use periodic boundaries.  With 
inclusive boundaries the rings in the xy plane "pile up" near the xy surfaces of the bounding cube, etc. 

The nsymb parameter is varied cyclically 0, 1, 2, 0, 1, 2, … at each placement so that there are 

equal numbers of the 3 orientations. 
The redund parameter is used to label redundant shapes when periodic boundaries are used.  

With periodic boundaries the first shape of those that have the same size has redund = 1 while all of 
the others (i.e., those displaced by a bounding cell period) have redund = 0. 

Also in the data file is an integer trials which is the number of trials needed to place the k-th 

shape.  This can be used for statistical studies, and provides a record of how the process proceeded. 
 

4. Chain Links and Data Files 

                                                           
4
 Chain linking cannot occur if 1 > 2/3 but the algorithm still runs. 
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With the rectangular shapes used it is fairly straightforward to compute whether two rings are 

chain-linked.  Several observations allow one to speed up this process: 
 

 Rings lying in the same plane cannot chain-link 

 Rings distant by more than (rA + rB) in x, y, or z cannot chain-link 

 If ring A links to ring B, then necessarily ring B links to ring A (offered without proof) 

 A ring does not link to itself 

 If the "arm width" (1r) of A is larger than the hole size (2r(11)) of B they cannot chain-

link 
 

The data file first line gives the X, Y, and Z dimensions of the bounding cube (i.e., 0 < x < X, etc.), 

the number of rings, and 1.  This is followed by repeated lines with the following data items 
(separated by spaces) in the following order: 

 
x, y, z, r, nsymb, linkct, redund, trials 

 
All except linkct are determined during execution of the algorithm, while linkct is found by post-

processing of the results.  

As 1 decreases the pattern becomes more sparse, a larger fraction of the rings have linkages, 
the largest usable c value becomes smaller, and a larger N value is needed to keep the first ring from 

exceeding the available space. 
For each run a file of linkages is created, i.e., an entry "27 304" indicates that ring 27 and ring 304 

are mutually chain-linked.  The linkage file is further processed to create a table of chains -- all of the 
ring numbers which belong to a given chain.  If there are a total of k rings, the number of linkages can 
greatly exceed k, and can be as large as k(k-1)/2.  If there are more linkages than rings it means that 

on average each ring is linked to several other rings.  Many examples of this can be seen in Fig. 3. 
From the viewpoint of graph theory the rings can be thought of as vertices and the chain linkages 

as edges.  A more detailed exploration of these graphs may be interesting but is left for future work. 
 

5. Statistics 
 

The statistical question studied is: "What is the probability that a chain of krings is formed?"  

There will be unlinked rings, pairwise-linked rings (chain length 1), etc.  The largest possible chain 
would include all of the rings and thus would have more than the number of nonredundant rings as 
members, i.e., a fractalization done for 100 nonredundant rings might have 113 rings altogether when 
the redundant rings are included.  By linked we mean linked in the topological sense, that it is not 
possible to separate the two rings without breaking one of them.  Linkage is a pairwise property. 

The runs were set up with the parameters given in Table 1. 
 

Table 1.  Fractalization parameters used in the work. 

case c N 1 rings runs linkages fill, % avg. trials/placement 

1 1.125 14.5 .28 2000 40 ~900 46 ~9.2k 

2 1.114 16 .25 2000 40 ~1500 42 ~10.2k 

3 1.095 19 .21 2000 40 ~2400 36 ~6.3k 

4 1.085 23 .18 2000 40 ~3400 32 ~6.8k 

5 1.075 29 .15 2000 40 ~5400 27 ~7.4k 

6 1.063 35 .125 2000 40 ~7800 22 ~5.2k 

 
The N and c values were chosen to make the outer edge length (long edge) of the first (largest) 

ring be approximately 5 units (with a bounding cube edge length of 10 units) and an average trials per 

placement of 5000-10000.  With 1 = .28 the rings are relatively thick and the number of linkages is 
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much less than the number of rings.  With 1 = .125 the rings are quite thin and the number of 
linkages is substantially larger than the number of rings. 

In all of the histograms the leftmost dot gives the number of rings with 3 or 4 members, the next 
one rings with 5, 6, 7, or 8 members, etc., i.e., the data is grouped logarithmically with each group 
having a 2x wider range than the last one.  The vertical value (y axis) is the total number of times 
chains within the ring member count range (x axis) were observed in 40 runs. 

Column 7 gives the typical total number of linkages between rings.  Column 8 gives the 
percentage fill.  Column 9 gives the average trials per placement, from which it can be seen that these 
were tight-packed runs requiring long searches for placement. 
Each dot in a histogram corresponds to the ring member count ranges shown in Table 2. 
 
Table 2.  Ring-count boundaries for the histograms.  Dot number 1 is the leftmost dot in the histograms. 
dot no 1 2 3 4 5 6 7 8 9 10 11 

range 3-4 5-8 0-16 17-32 33-64 65-128 129-256 257-512 513-1024 1025-2048 >2048 

 
The x coordinate of a dot in the histograms is taken as the log of the geometric mean of its two 

boundaries, i.e., the range 5-8 would be plotted as the log of 2484  . 
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Fig. 5.  Log-log histogram for 1 = .28 ("thick" rings).  There are no chains with >128 members, and the number 
of chains falls very rapidly for large member counts.  This distribution can be approximated by the lognormal 
distribution.  

 
Fig. 6.  Log-log histogram for 1 = .25.  The rings are thinner and the number of chains with 3-4 members is 
down slightly, while there are now a few chains with 257-512 members.  
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Fig. 7.  Log-log histogram for 1 = .21.  The rings are thinner than Fig. 6 and the number of chains with 3-4 

members is again down substantially, while there are now a few chains with 513-1024 members.  The decline in 
the number of instances versus chain size is less steep than in Fig. 6 and resembles a fat-tailed power law (with 
approximate exponent -.5) for the first 7 points. 
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Fig. 8.  Log-log histogram for 1 = .18.  The rings are thinner than Fig. 7 and the number of chains with 3-4 
members is down again, while there is now one chain with 1025-2048 members.  The decline in the number of 
instances versus chain size resembles a fat-tailed power law (with approximate exponent -.5) for the first 9 
points. 
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Fig. 9.  Log-log histogram for 1 = .15.  The rings are thinner than Fig. 8 and the number of chains with 3-4 
members is down sharply.  The first 9 points follow an approximate power law, but then we have an increase in 
the number of chains with 1025-2048 members.  The largest chains now may include more than half of all the 
rings.  There are two chains with >2048 members, which is possible because of redundant rings. 
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Fig. 10.  Log-log histogram for 1 = .125.  The rings are thinner than Fig. 9 and the number of chains with 3-4 
members is again down sharply.  The first few points follow an approximate power law; then there is a dip 
followed by a sharp increase in the number of chains with >1024 members.  The largest chain now includes 
most of the rings, i.e., a single chain becomes dominant.  The runs making up this data had typically around 
8000 linkages, so that the average ring was linked to 4 others. 

 

When 1 = .28 the distribution looks like a downward-opening parabola in a log-log plot.  The 
Gaussian distribution has this form in a semilog plot, but not in a log-log plot.  Distributions of this kind 
are called lognormal5 distributions.   

With 1 = .125, .15, .18, and .21 a portion of the data gives an approximate straight line 
corresponding to a negative-exponent power law, but for the largest chains the behavior is quite 

different.  For 1 = .125 and .15 there is a minimum in the histogram, with most of the rings in a small 
number of chains or a single chain. 

For the lowest 1 value (.125) with quite thin rings there is a sort of "chain reaction" (if you pardon 
the expression) which results in a single dominant chain. Just as uranium atoms react producing 2-3 

                                                           
5
 The lognormal distribution is described in both Wikipedia and Wolfram MathWorld.  The lognormal distribution 

has uses in economics, and the size distributions of some biological objects obey the lognormal distribution.  In 
the latter case one could conclude that the underlying growth processes have a lognormal trend.  The lognormal 
distribution has a probability p(0) = 0, which agrees with the fact that there are no chains with zero length. 
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new neutrons from a single neutron-induced fission, here we get about 4 links for each ring.  A closer 
look at the data shows that the non-dominant chains are few in number and have only small numbers 
of rings.  As the process continues they will become linked to the dominant chain, while a few small 
new chains are produced.  It is improbable that one can achieve 100% linking by this means. 

There are several "regimes" of the process for different links/rings ratios.  If links << rings (large 

1) the chain sizes have a lognormal distribution.  If links >> rings (small 1) there is a dominant chain 

which contains most of the rings.  In the intermediate case where links  rings an approximate power-
law trend can be seen. 

Linking adds a unique feature to the system, not seen in other 3D fractals to date.  The growth of 
the chains involves a "rich get richer" principle of positive feedback.  A chain which has more rings 
than the others is more likely to link to still more rings.  If there are several large chains one can get 
an even larger chain if there is a lucky linkage which links two large chains by "merger".  When links 
>> rings (thin rings) the linkage can be relatively "long-range" -- two rings can become linked which 
are not immediate neighbors.

This system has a large "space" of parameters (c, N, 1, etc.).  The results described here are 

just one example.  Broader study of this subject is left for future work. 
The algorithm was also set up with an additional constraint, that each new ring must not only not 

overlap any earlier ring, but must have at least one link to an earlier ring.  Tests of this were a failure 
with the parameters used.  No run was able to place even 100 rings without stopping.  The records of 
the number of trials needed showed that its increase was much faster than without the all-linked 
constraint.

 
6. Reference 

 
The best reference for the algorithm is the Shier-Bourke paper.  Copies of the last version to go to 

the editor can be downloaded at the Shier or Bourke web sites.  The formal citation is: 
 

/1/ "An Algorithm for Random Fractal Filling of Space", John Shier and Paul Bourke, Computer 
Graphics Forum, Vol. 32, Issue 8, pp. 89-97, December 2013. 
 
There is much additional information at the Shier and Bourke web sites. 


